Stationarity of Generalized Autoregressive Moving Average Models
نویسندگان
چکیده
Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are believed to be stationary. Although stationarity of the underlying process is typically crucial to ensure desirable properties or even validity of statistical estimators, there are numerous time series models for which this stationarity is not yet proven. A major barrier is that the most commonly-used methods assume φ-irreducibility, a condition that can be violated for the important class of discrete-valued observation-driven models. We show (strict) stationarity for the class of Generalized Autoregressive Moving Average (GARMA) models, which provides a flexible analogue of ARMA models for count, binary, or other discrete-valued data. We do this from two perspectives. First, we show stationarity and ergodicity of a perturbed version of the GARMA model, and show that the perturbed model yields parameter estimates that are arbitrarily close to those of the original model. This approach utilizes the fact that the perturbed model is φ-irreducible. Second, we show that the original GARMA model has a unique stationary distribution (so is strictly stationary when initialized in that distribution).
منابع مشابه
Establishing Stationarity of Time Series Models via Drift Criteria
Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are known (or believed) to be stationary. However, there are numerous time series models for which the stationarity of the underlying process is conjectured but not yet proven. We give an approachable introduction to the use of drift criteria (also known as Lyapunov function...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملAsymptotic Theory for a Vector Arma-garch Model
This paper investigates the asymptotic theory for a vector autoregressive moving average–generalized autoregressive conditional heteroskedasticity ~ARMAGARCH! model+ The conditions for the strict stationarity, the ergodicity, and the higher order moments of the model are established+ Consistency of the quasimaximum-likelihood estimator ~QMLE! is proved under only the second-order moment conditi...
متن کاملRobust Bayesian estimation of autoregressive - moving
A Bayesian approach is presented for modeling a time series by an autoregressive-moving average model. The treatment is robust to innovation and additive outliers and identiies such outliers. It enforces stationarity on the autoregressive parameters and invertibility on the moving average parameters, and takes account of uncertainty about the correct model by averaging the parameter estimates a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011